MATHEMATICS 20-3

Mr. M Cherney

COURSE OUTLINE 2025-2026

Ch 1 Slope, Rate	9-3 Classes-Lessons	9 School Days	Jan 28 – Feb 9
Ch 2 Graphs	11(12 OE)-4 Classes-Lessons	10(11) School Days	Feb 10 – Mar 3
Ch 3 Area, Volume, Capa	city 12-4 Classes-Lessons	11 School Days	Mar 4 – Mar 19
Ch 4 Trigonometry	7(SB)-2 Classes-Lessons	7 School Days	Mar 20 – Apr 14
Ch 5 Scale	10-3 Classes-Lessons	9 School Days	Apr 15 – Apr 27
Ch 6 Finance	11-4 Classes-Lessons	11 School Days	Apr 28 – May 12
Ch 7 Budgets	10(12 OE)-3 Classes-Lessons	10(12) School Days	May 13 – Jun 1
Course Review	7-7 Classes-Lessons	7 School Days	Jun 2 – Jun 11
In Class Final Part Ch 1/2	1-1 Classes-Lessons	1 School Days	Jun 12 – Jun 12
	75(78)-31 Classes-Lessons	75(78) School Days	

Final

Final Exam

Jun 15 – 23

COURSE MARKING 2025-2026

Heading	Date	Weight	Points Earned (%)	Percent (%)
Course Work		75		
Tests		95		
Ch 1 Unit Price, Exchange		15		
Ch 2 Income		14		
Ch 3 Length, Area, Volume		14		
Ch 4 Trigonometry		14		
Ch 5 Scale		14		
Ch 6 Finance		14		
Ch 7 Budgets		15		
Homework		5		
Final Exam		25		
Final Grade				

Daily Homework for each assignment is due the day the chapter test is written when your workbooks are collected. It will be marked for completeness, 1 mark for each completed question out of the total assigned questions. Each question number of your work is to be highlighted once (**not** abc parts) with a marker.

Online Tutorials will be used for individualized instruction based on the MathWorks 11 Workbook at: https://sites.google.com/a/share.epsb.ca/mr-trimble-s-math-site/Home (can also google: mr trimble math courses or mr trimble math videos and resources – it should be the first site that comes up)

MATH 20-3 FORMULF SHEET

CHAPTER 1

Slope =
$$\frac{\text{rise}}{\text{run}}$$
 ton0 = $\frac{\text{app}}{\text{adj}}$
slope = $\frac{42-41}{4x-4x}$ $\frac{4^2+b^2=c^2}{4x-4x}$
% grade = $\frac{\text{rise}}{\text{run}} \times 100$

CHAPTER 3

CHAPTER 4

$$\cos\theta = \frac{adj}{hyp} a^2 + b^2 = c^2$$

COMPAINDING & TERM

Final VALUE
$$A = P(1 + \frac{r}{n})^{nt}$$

PRINCIPLE

PERIOD

PRINCIPLE

CHAPTER 7

PERIOD

COMPOUNDING & TERM

MATHEMATICS 10C FORMULA SHEET

Graphing Calculator Window Format

$$x[x_{\min}, x_{\max}, x_{scl}]$$

$$y[y_{\min}, y_{\max}, y_{scl}]$$

Conversion Tables

Imperial	Metric
ımperiai	Metri

1 inch = 1"= $1 in$	1 millimetre = 1 mm
1 foot = 1'=1 ft	1 centimetre = 1 cm
1 yard = 1 yd	1 metre = 1 m
1 mile = 1 mi	1 kilometre = 1 km

$$1 \text{ yd} = 3 \text{ ft} = 36 \text{ in}$$
 $1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm}$

$$1 \text{ mi} = 1760 \text{ yd} = 5280 \text{ ft}$$
 $1 \text{ km} = 1000 \text{ m}$

Cross Over

$$1 \text{ in} = 2.54 \text{ cm}$$

$$1 \text{ ft} = 30 \text{ cm} = 0.3 \text{ m}$$

$$1 \text{ yd} = 91.44 \text{ cm} = 0.9144 \text{ m}$$

$$1 \text{ mi} = 1.6 \text{ km}$$

$$1 \text{ mm} = 4/100 \text{ in} = 0.04 \text{ in}$$

$$1 \text{ cm} = 4/10 \text{ in} = 0.4 \text{ in}$$

$$1 \text{ m} = 39 \text{ in} = 3 \frac{1}{4} \text{ ft} = 3.25 \text{ ft}$$

$$1 \text{ km} = 0.6 \text{ mi}$$

Surface Area

Pyramids
$$SA = A_L + B$$

Regular Pyramids
$$SA = \frac{1}{2}(s)(P) + B$$

and Cones

Cones
$$SA = \pi rs + \pi r^2$$

Cylinders
$$SA = 2\pi rh + 2\pi r^2$$

Spheres
$$SA = 4\pi r^2$$

Hemispheres
$$SA = 3\pi r^2$$

Volume

Prisms	V =	Bh

Pyramids
$$V = \frac{1}{3}Bh$$

Cones
$$V = \frac{1}{3}\pi r^2 h$$

Cylinders
$$V = \pi r^2 h$$

Spheres
$$V = \frac{4}{3} \pi r^3$$

Hemispheres
$$V = \frac{2}{3}\pi r^3$$

Trigonometry

SOH CAH TOA

$$\sin A = \frac{opp}{hyp}$$
 $\cos A = \frac{adj}{hyp}$ $\tan A = \frac{opp}{adj}$

Pythagoras

$$c^2 = a^2 + b^2$$

Angle Sum

$$\angle A + \angle B + \angle C = 180^{\circ}$$

Polynomials

Factoring

Prime Factorization Common Factor

Product Sum Factoring

Factor by Grouping (Decomposition)

Perfect Trinomial Squares Difference of Squares

Expanding

Distributive Property

FOIL

Binomial Squares

Conjugates

Radicals and Powers

$$x^{a} \times x^{b} = x^{a+b}$$

$$x^{a} \div x^{b} = x^{a-b}$$

$$x^{-a} = \frac{1}{x^{a}} \text{ or } \left(\frac{x}{y}\right)^{-a} = \left(\frac{y}{x}\right)^{a}, \quad x, y \neq 0$$

$$x^{a} \div x^{a} = x^{a-a} = x^{0} = 1, \qquad x \neq 0$$

$$(xy)^{a} = x^{a}y^{a}$$

$$\left(\frac{x}{y}\right)^{a} = \frac{x^{a}}{y^{a}}, \qquad y \neq 0$$

$$(x^{a})^{b} = x^{ab}$$

$$x^{\frac{a}{b}} = \left(\sqrt[b]{x}\right)^{a} = \sqrt[b]{x^{a}} = x^{a \times \frac{1}{b}}$$

Linear Relations

$$m = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Linear Functions

Slope Intercept Form

$$y = mx + b$$

Slope Point Form

$$y - y_1 = m(x - x_1)$$

Two Point Form

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Two Intercept Form

$$\frac{x}{a} + \frac{y}{b} = 1$$

General Form

$$Ax + By + C = 0$$

Standard Form

$$Ax + By = -C$$