PHYSICS 30

Mr. M Cherney

COURSE OUTLINE 2024-2025

Ch 09 Conservation of Momentum	8 Classes	8 School Days	Jan 28 – Feb 6
Ch 10 and 11 Electric Forces, Fields	9(10 OE) Classes	9(10) School Days	Feb 7 – Feb 27
Ch 12 Magnetic Forces and Fields	7 Classes	7 School Days	Feb 28 – Mar 10
Ch 13 Electromagnetic Radiation	11 Classes	11 School Days	Mar 11 – Apr 9
Ch 14 Quantum Nature of Light	8 Classes	8 School Days	Apr 10 – Apr 23
Ch 15 Atomic Physics	10 Classes	10 School Days	Apr 24 – May 7
Ch 16 and 17 Radioactivity	12(14 OE) Classes	12(14) School Days	May 8 – May 29
Course Review	7 Classes	10 School Days	May 30 – Jun 13
75(78) Classes 75(78) School Days			

Final

Diploma Exam Jun 24, 2025

COURSE MARKING 2024-2025

Heading	Date	Weight	Points Earned (%)	Percent (%)
Course Work		70		
Tests		90		
Ch 09 Conservation of Momentum		15		
Ch 10 and 11 Electric Forces and Fields		15		
Ch 12 Magnetic Forces and Fields		15		
Ch 13 Electromagnetic Radiation		15		
Ch 14 Quantum Nature of Light		10		
Ch 15 Atomic Physics		15		
Ch 16 and 17 Radioactivity		15		
Homework, Quizzes, Labs		10		
Final Exam	·	30		
Final Grade				

Daily Homework for each assignment is due the day after it is assigned. It will be marked for completeness, 1 mark for each completed question out of the total assigned questions. Each question number of your work is to be highlighted once (<u>not</u> abc parts) with a marker. Each assignment is to have your Name, Date, and Assignment Label and to be clearly marked as correct or incorrect (and corrected).

Review Quizzes are given twice per chapter or when necessary as review. Each quiz will have about 5-10 questions.

Labs are due on the assigned dates. They are a set of questions and related problems designed to challenge and stimulate investigation and problem solving. Full complete written answers with graphs, diagrams, charts, explanations, and organized written work are expected.

Review Summary Sheets are given for each chapter and can be used as 'I Can' statements to self-assess learning or as review sheets for content covered in the chapter.

Tests may be rewritten on any chapter up to two times at any time during the semester before the beginning of the Course Review at the end of the semester. Your best score up to 79% will be taken on rewrites. Before any test is rewritten all previous tests from other chapters must be complete and at least some homework from the rewritten chapter must be handed in.

Extra Help or a quiet place to work is available during any lunch hour in my room throughout the year on a come and go as you need help basis.

~4.8 MeV/c²

~4.8 MeV/c²

PHYSICS DATA SHEET

Constants

Acceleration Due to Gravity Near Earth	$ \vec{a}_{\rm g} = 9.81 \text{ m/s}^2$
Gravitational Constant	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Radius of Earth	$r_{\rm e} = 6.37 \times 10^6 \mathrm{m}$
Mass of Earth	$M_{\rm e} = 5.97 \times 10^{24} \rm kg$
Elementary Charge	$e = 1.60 \times 10^{-19} \mathrm{C}$
Coulomb's Law Constant	$k = 8.99 \times 10^9 \mathrm{N \cdot m^2/C^2}$
Electron Volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
Index of Refraction of Air.	n = 1.00
Speed of Light in Vacuum.	$c = 3.00 \times 10^8 \text{ m/s}$
Planck's Constant	$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ $h = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$
Atomic Mass Unit	$u = 1.66 \times 10^{-27} \text{ kg}$

Physics Principles

- 0 Uniform motion $(\vec{F}_{net} = 0)$
- 1 Accelerated motion $(\vec{F}_{net} \neq 0)$
- 2 Uniform circular motion (\vec{F}_{net} is radially inward)
- 3 Work-energy theorem
- 4 Conservation of momentum
- 5 Conservation of energy
- 6 Conservation of mass-energy
- 7 Conservation of charge
- 8 Conservation of nucleons
- 9 Wave-particle duality

Prefixes Used with SI Units

Prefix	Symbol E	xponential Value
atto	a	10 ⁻¹⁸
	f	
	p	
	n	
	μ	
	m	
	c	
	d	
	da	_
hecto	h	10 ²
	k	_
	M	
_	G	
	T	

Particles		
	Charge	Mass
Alpha Particle	+2e	$6.65 \times 10^{-27} \text{ kg}$
Electron	1e	$9.11 \times 10^{-31} \text{ kg}$
Proton	+1e	$1.67 \times 10^{-27} \text{ kg}$
Neutron	0	$1.67 \times 10^{-27} \text{ kg}$

First-Generation Fermions Charge Mass ~0.511 MeV/c² Electron...... -1e ~0.511 MeV/c² Positron +1e $< 2.2 \text{ eV/c}^2$ Electron neutrino, v...... 0 $< 2.2 \text{ eV/c}^2$ Electron antineutrino, \overline{v} 0 Up quark, u..... $+\frac{2}{3}e$ ~2.4 MeV/c² Anti-up antiquark, $\overline{\mathbf{u}}$ $-\frac{2}{3}e$ ~2.4 MeV/c² Down quark, d..... $-\frac{1}{3}e$

Anti-down antiquark, \overline{d} $+\frac{1}{3}e$

EQUATIONS

Kinematics

$$\vec{v}_{\text{ave}} = \frac{\Delta \vec{d}}{\Delta t}$$

$$\vec{d} = \vec{v}_{f}t - \frac{1}{2}\vec{a}t^2$$

$$\vec{a}_{\rm ave} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{a}_{\rm ave} \, = \, \frac{\Delta \vec{v}}{\Delta t} \qquad \qquad \vec{d} \, = \, \left(\, \frac{\vec{v}_{\rm f} + \vec{v}_{\rm i}}{2} \right) t \label{eq:ave}$$

$$\vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

$$\vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$
 $v_f^2 = v_i^2 + 2ad$

$$\left|\vec{v}_{\rm c}\right| = \frac{2\pi r}{T}$$

$$\left| \vec{v}_{\rm c} \right| = \frac{2\pi r}{T} \qquad \left| \vec{a}_{\rm c} \right| = \frac{v^2}{T} = \frac{4\pi^2 r}{T^2}$$

Dynamics

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m}$$

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m}$$
 $\left| \vec{F}_{\text{g}} \right| = \frac{Gm_1m_2}{r^2}$

$$\left| \vec{F}_{\rm f} \right| = \mu \left| \vec{F}_{\rm N} \right|$$
 $\left| \vec{g} \right| = \frac{Gm}{r^2}$ $F_{\rm s} = -k\vec{x}$ $g = \frac{\vec{F}_{\rm g}}{m}$

$$\left| \vec{g} \right| = \frac{Gm}{r^2}$$

$$\vec{F}_{\rm s} = -k\vec{x}$$

$$\vec{g} = \frac{\vec{F}_g}{m}$$

Momentum and Energy

$$\vec{p} = m\vec{v}$$

$$E_{\rm k} = \frac{1}{2}mv^2$$

$$\vec{F}\Delta t = m\Delta \vec{v}$$
 $E_{\rm p} = mgh$

$$E_{\rm p} = mgh$$

$$W = |F| |\vec{d}| \cos \theta \qquad E_{\rm p} = \frac{1}{2} k x^2$$

$$E_{\rm p} = \frac{1}{2}kx^2$$

$$W = \Delta E$$

$$P = \frac{W}{t}$$

Waves

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$T = 2\pi \sqrt{\frac{m}{k}} \qquad m = \frac{h_i}{h_o} = \frac{-d_i}{d_o}$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = 2\pi \sqrt{\frac{l}{g}} \qquad \frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_1}$$

$$T = \frac{1}{f}$$

$$T = \frac{1}{f} \qquad \qquad \frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2}$$

$$v = f\lambda$$

$$v = f\lambda \qquad \frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$

$$f = \left(\frac{v}{v \pm v_{\rm s}}\right) f_{\rm s}$$
 $\lambda = \frac{d \sin \theta}{n}$

$$\lambda = \frac{d \sin \theta}{n}$$

$$\lambda = \frac{xd}{nl}$$

Electricity and Magnetism

$$\left| \vec{F}_{\rm e} \right| \, = \, \frac{kq_1q_2}{r^2} \qquad \Delta V \, = \, \frac{\Delta E}{q} \label{eq:Fe}$$

$$\Delta V = \frac{\Delta E}{q}$$

$$\left| E \right| = \frac{kq}{r^2} \qquad I = \frac{q}{t}$$

$$I = \frac{q}{t}$$

$$\vec{E} = \frac{\vec{F}_{e}}{q}$$

$$\vec{E} = \frac{\vec{F}_{e}}{q}$$
 $|\vec{F}_{m}| = II_{\perp}|\vec{B}|$

$$|E'| = \frac{\Delta V}{\Delta d}$$

$$\left| \vec{E} \right| = \frac{\Delta V}{\Delta d}$$
 $\left| \vec{F}_{\rm m} \right| = q v_{\perp} \left| \vec{B} \right|$

Atomic Physics

$$W = hf_0$$

$$E = hf = \frac{hc}{\lambda}$$

$$E_{\rm k_{max}} = q_{\rm e} V_{\rm stop}$$

$$N = N_0 \left(\frac{1}{2}\right)^n$$

Quantum Mechanics and Nuclear Physics

$$\Delta E = \Delta mc^2$$

$$E = pc$$

$$p = \frac{h}{\lambda}$$

$$\Delta \lambda = \frac{h}{mc} (1 - \cos \theta)$$

Trigonometry and Geometry

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

Line
$$m = \frac{\Delta y}{\Delta x}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

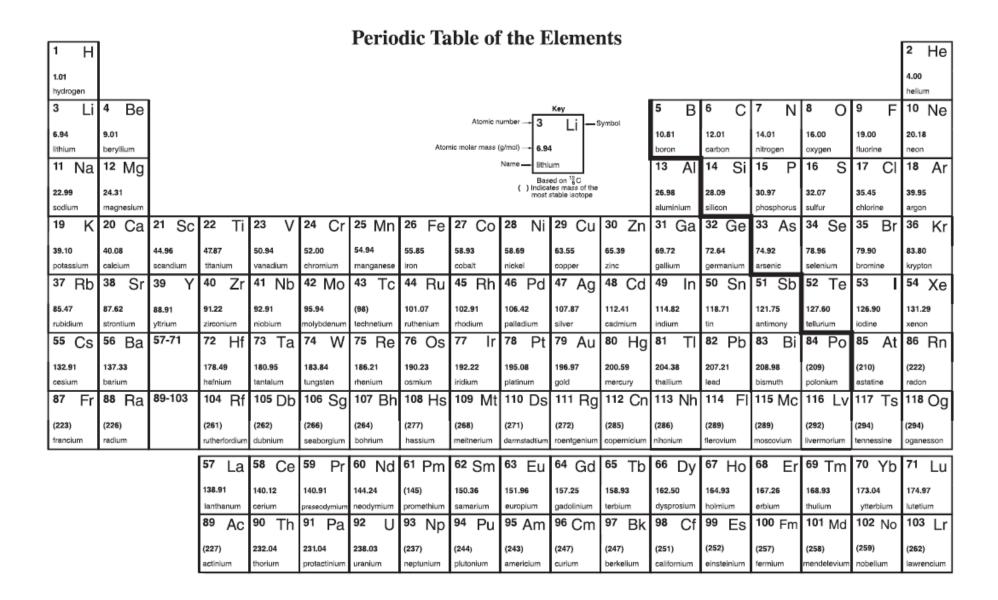
$$y = mx + b$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

$$c^2 = a^2 + b^2$$

Rectangle =
$$lw$$

$$c^2 = a^2 + b^2$$


Triangle =
$$\frac{1}{2}ab$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Circle =
$$\pi r^2$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Circle =
$$2\pi r$$

