MATHEMATICS 10-3 A

Mr. M Cherney

COURSE OUTLINE 2024-2025 A

Ch 1 Unit Price, Exchang	e 10(11 1 st)-5 Classes-Lessons	10(11) School Days	Sept 3 – Sept 17
Ch 2 Income	9(11 FR)-4 Classes-Lessons	9(11) School Days	Sept 18 – Oct 4
Ch 3 Length, Area, Volur	me 9-4 Classes-Lessons	9 School Days	Oct 7– Oct 18
Ch 4 Mass, Temp, Volum	e 9-4 Classes-Lessons	9 School Days	Oct 21 – Nov 1
Ch 5 Angles, Parallel Lin	es 9-4 Classes-Lessons	9 School Days	Nov 4 – Nov 15
Ch 6 Similarity	10-4 Classes-Lessons	10 School Days	Nov 18 – Dec 2
Ch 7 Trigonometry	11-5 Classes-Lessons	11 School Days	Dec 3 – Dec 17
Course Review	1(12 TAL)-7 Classes-Lessons	11(12) School Days	Dec 18 – Jan 16
In Class Final Part Ch 1/2	1-1 Classes-Lessons	1 School Days	Jan 17 – Jan 17
	77(80)-38 Classes-Lessons	79(83) School Days	

Final

Final Exam Jan 20 - 27

COURSE MARKING 2024-2025 A

Heading	Date	Weight	Points Earned (%)	Percent (%)
Course Work		80		
Tests		90		
Ch 1 Unit Price, Exchange		15		
Ch 2 Income		14		
Ch 3 Length, Area, Volume		14		
Ch 4 Mass, Temp, Volume		14		
Ch 5 Angles, Parallel Lines		14		
Ch 6 Similarity		14		
Ch 7 Trigonometry		15		
Homework		10		
Final Exam		20		
Final Grade				

Daily Homework for each assignment is due the day the chapter test is written when your workbooks are collected. It will be marked for completeness, 1 mark for each completed question out of the total assigned questions. Each question number of your work is to be highlighted once (**not** abc parts) with a marker.

Online Tutorials will be used for individualized instruction based on the MathWorks 11 Workbook at: https://sites.google.com/a/share.epsb.ca/mr-trimble-s-math-site/Home (can also google: mr trimble math courses or mr trimble math videos and resources – it should be the first site that comes up) or https://sites.google.com/a/share.epsb.ca/mr-trimble-s-math-site/math-10-3

Math 10-3 Formula Sheet

Linear Measurement

1 ft = 12 in 1 yd = 3 ft1 mi = 1760 yd

1 acre = 4840 sq yd 1 vd ≐ 0.91 m 1 mi ≐ 1.61 km 1 acre = 0.4047 ha 1 m = 1000 mm 1 m = 100 cm

Imperial to SI

1 in = 2.54 cm

1 ft = 0.31 m

SI to Imperial 1 mm = 0.039 in 1 cm = 0.39 in 1 m = 1.09 vd 1 km = 0.62 mi 1 ha = 2.4711 acres

In a circle

1 km = 1000 m

 $diameter = radius \times 2$ circumference = $\pi \times$ diameter circumference = $\pi \times \text{radius} \times 2$

Area

Triangle: $A = \frac{1}{2}(b \times h)$

Circle: $A = \pi r^2$

Trapezoid: $A = \frac{1}{2}$ (sum of parallel lengths) × height

Parallelogram: $A = base \times height$

Imperial to SI

SI to imperial $1 \text{ sq in} = 6.4516 \text{ cm}^2$ $1 \text{ cm}^2 = 0.1550 \text{ sq in}$ $1 \text{ sq ft} = 0.0929 \text{ m}^2$ $1 \text{ m}^2 = 10.7639 \text{ sq ft}$ $1 \text{ sq yd} = 0.8361 \text{ m}^2$ $1 \text{ km}^2 = 0.3861 \text{ sg mi}$

 $1 \text{ sq mi} = 2.5900 \text{ km}^2$

Mass

SI Mass Imperial (US) SI to Imperial (US) Mass Imperial (US) to SI Mass 1 t = 1000 kg 1 lb = 16 oz 1 oz = 28.35 g1 g = 0.04 oz1 kg = 1000 g1T = 2000 lb 1 lb = 0.45 kg1 kg = 2.21 lb1g = 0.001 mg1T = 0.91t1 t = 1.10 T

Surface Area

Closed cone: $SA = \pi r^2 + \pi rs$

Prefixes

penta means 5 octa means 8 hexa means 6 nona means 9 hepta means 7 deca means 10

Volume

Si Volume

1 hm³ = 1 000 000 m³

1 cu ft = 1728 cu in

1 dam³ = 1000 m³

1 cu yd = 27 cu ft

1m³ = 1 000 000 cm³

1 m³ = 0.000 000 cm³ 1 cm³ = 0.000 001 m³ 1 dm³ = 0.001 m³

 $1 \text{ km}^3 = 1 000 000 000 \text{ m}^3$

 $1 \, \text{cm}^3 = 1 \, \text{mL}$

Imperial to SI Volume
1 cu in = 16.39 cm³
SI to Imperial Volume
1 cm³ = 0.06 cu in

1 cu ft = 28.32 dm³ 1 m³ = 1.31 cu yd 1 cu ft = 0.02832 m³ 1 km³ = 0.24 cu mi

1 cu yd = 0.76 m³ 1 cu mi = 4.17 km³ Temperature

 $F = \frac{9}{5}C + 32$

 $C = \frac{5}{9}(F - 32)$

Capacity

SI Capacity Imperial to SI Capacity SI to Imperial Capacity Imperial Capacity (US) 1 mL = 0.03 fl oz 1 kL = 1000 L 1 fl oz = 2 T (tablespoons) 1 fl oz = 29.57 mL 1 hL = 100L 1 c = 8 fl oz 1 pt = 0.47 L1 L = 2.11 pt1 daL = 10 L 1 pt = 2 c 1 qt = 0.95 L1 L = 1.06 qt1 L = 0.26 gai 1 dL =0.1 L 1 qt = 2 pt1 gal = 3.79 L 1 cl. = 0.01 L 1 gal = 4 qt

Right Triangles

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

1 mL = 0.001 L

Ratios of Sides

 $\sin \angle A = \frac{opposite}{hypotenuse}$ $\cos \angle A = \frac{adjacent}{hypotenuse}$ $\tan \angle A = \frac{opposite}{adjacent}$

MATHEMATICS 10C FORMULA SHEET

Graphing Calculator Window Format

$$x[x_{\min}, x_{\max}, x_{scl}]$$

$$x[x_{\min}, x_{\max}, x_{scl}]$$
 $y[y_{\min}, y_{\max}, y_{scl}]$

Conversion Tables

Imperial Metric

1 inch = 1"=1 in 1 millimetre = 1 mm1 foot = 1'=1 ft1 centimetre = 1 cm1 yard = 1 yd1 metre = 1 m1 mile = 1 mi1 kilometre = 1 km

1 ft = 12 in1 cm = 10 mm

1 yd = 3 ft = 36 in1 m = 100 cm = 1000 mm

1 mi = 1760 yd = 5280 ft1 km = 1000 m

Cross Over

1 in = 2.54 cm

1 ft = 30 cm = 0.3 m

1 yd = 91.44 cm = 0.9144 m

1 mi = 1.6 km

1 mm = 4/100 in = 0.04 in

1 cm = 4/10 in = 0.4 in

 $1 \text{ m} = 39 \text{ in} = 3 \frac{1}{4} \text{ ft} = 3.25 \text{ ft}$

1 km = 0.6 mi

Surface Area

 $SA = A_L + B + B$ Prisms

 $SA = A_L + B$ Pyramids

 $SA = \frac{1}{2}(s)(P) + B$ Regular Pyramids

and Cones

 $SA = \pi r s + \pi r^2$ Cones

 $SA = 2\pi rh + 2\pi r^2$ Cylinders

 $SA = 4\pi r^2$ **Spheres**

 $SA = 3\pi r^2$ Hemispheres

Volume

V = BhPrisms

 $V = \frac{1}{3}Bh$ Pyramids

 $V = \frac{1}{3}\pi r^2 h$ Cones

 $V = \pi r^2 h$ Cylinders

 $V = \frac{4}{3}\pi r^3$ **Spheres**

 $V = \frac{2}{3} \pi r^3$ Hemispheres

Trigonometry

SOH CAH TOA

 $\sin A = \frac{opp}{hyp}$ $\cos A = \frac{adj}{hyp}$ $\tan A = \frac{opp}{adj}$

Pythagoras

 $c^2 = a^2 + b^2$

Angle Sum

 $\angle A + \angle B + \angle C = 180^{\circ}$

Polynomials

Factoring

Prime Factorization Common Factor

Product Sum Factoring

Factor by Grouping (Decomposition)

Perfect Trinomial Squares Difference of Squares

Expanding

Distributive Property

FOIL

Binomial Squares

Conjugates

Radicals and Powers

$$x^{a} \times x^{b} = x^{a+b}$$

$$x^{a} \div x^{b} = x^{a-b}$$

$$x^{-a} = \frac{1}{x^{a}} \text{ or } \left(\frac{x}{y}\right)^{-a} = \left(\frac{y}{x}\right)^{a}, \quad x, y \neq 0$$

$$x^{a} \div x^{a} = x^{a-a} = x^{0} = 1, \qquad x \neq 0$$

$$(xy)^{a} = x^{a}y^{a}$$

$$\left(\frac{x}{y}\right)^{a} = \frac{x^{a}}{y^{a}}, \qquad y \neq 0$$

$$(x^{a})^{b} = x^{ab}$$

$$x^{\frac{a}{b}} = \left(\sqrt[b]{x}\right)^{a} = \sqrt[b]{x^{a}} = x^{a \times \frac{1}{b}}$$

Linear Relations

$$m = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Linear Functions

Slope Intercept Form

$$y = mx + b$$

Slope Point Form

$$y - y_1 = m(x - x_1)$$

Two Point Form

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Two Intercept Form

$$\frac{x}{a} + \frac{y}{b} = 1$$

General Form

$$Ax + By + C = 0$$

Standard Form

$$Ax + By = -C$$